Accurate diagnosis and prognosis of Alzheimer's disease are crucial to develop new therapies and reduce the associated costs. Recently, with the advances of convolutional neural networks, methods have been proposed to automate these two tasks using structural MRI. However, these methods often suffer from lack of interpretability, generalization, and can be limited in terms of performance. In this paper, we propose a novel deep framework designed to overcome these limitations. Our framework consists of two stages. In the first stage, we propose a deep grading model to extract meaningful features. To enhance the robustness of these features against domain shift, we introduce an innovative collective artificial intelligence strategy for training and evaluating steps. In the second stage, we use a graph convolutional neural network to better capture AD signatures. Our experiments based on 2074 subjects show the competitive performance of our deep framework compared to state-of-the-art methods on different datasets for both AD diagnosis and prognosis.
translated by 谷歌翻译
检测新的多发性硬化症(MS)病变是该疾病进化的重要标志。基于学习的方法的适用性可以有效地自动化此任务。然而,缺乏带有新型病变的注释纵向数据是训练健壮和概括模型的限制因素。在这项工作中,我们描述了一条基于学习的管道,该管道解决了检测和细分新MS病变的挑战性任务。首先,我们建议使用单个时间点对在分割任务进行训练的模型中使用转移学习。因此,我们从更轻松的任务中利用知识,并为此提供更多注释的数据集。其次,我们提出了一种数据综合策略,以使用单个时间点扫描生成新的纵向时间点。通过这种方式,我们将检测模型预算到大型合成注释数据集上。最后,我们使用旨在模拟MRI中数据多样性的数据实践技术。通过这样做,我们增加了可用的小注释纵向数据集的大小。我们的消融研究表明,每个贡献都会提高分割精度。使用拟议的管道,我们获得了MSSEG2 MICCAI挑战中新的MS病变的分割和检测的最佳分数。
translated by 谷歌翻译
阿尔茨海默氏病和额颞痴呆是两种主要痴呆症。它们的准确诊断和分化对于确定特定干预和治疗至关重要。然而,由于临床症状的类似模式,在疾病的早期,这两种痴呆症的鉴别诊断仍然很困难。因此,多种类型痴呆的自动分类具有重要的临床价值。到目前为止,尚未积极探索这一挑战。最近在医学图像领域进行深度学习的发展已经证明了各种分类任务的高性能。在本文中,我们建议利用两种类型的生物标志物:结构分级和结构萎缩。为此,我们首先建议训练大型3D U-NET的合奏,以局部区分健康与痴呆症解剖模式。这些模型的结果是一个可解释的3D分级图,能够指示异常的大脑区域。该地图也可以使用图形卷积神经网络在各种分类任务中被利用。最后,我们建议将深度分级和基于萎缩的分类结合起来,以改善痴呆型识别。与最先进的疾病检测任务和鉴别诊断任务相比,提出的框架表现出竞争性能。
translated by 谷歌翻译
阿尔茨海默氏病的准确诊断和预后对于开发新疗法和降低相关成本至关重要。最近,随着卷积神经网络的进步,已经提出了深度学习方法,以使用结构MRI自动化这两个任务。但是,这些方法通常缺乏解释性和泛化,预后表现有限。在本文中,我们提出了一个旨在克服这些局限性的新型深框架。我们的管道包括两个阶段。在第一阶段,使用125个3D U-NET来估计整个大脑的体voxelwise等级得分。然后将所得的3D地图融合,以构建一个可解释的3D分级图,以指示结构水平的疾病严重程度。结果,临床医生可以使用该地图来检测受疾病影响的大脑结构。在第二阶段,分级图和受试者的年龄用于使用图卷积神经网络进行分类。基于216名受试者的实验结果表明,与在不同数据集上进行AD诊断和预后的最新方法相比,我们的深框架的竞争性能。此外,我们发现,使用大量的U-NET处理不同的重叠大脑区域,可以提高所提出方法的概括能力。
translated by 谷歌翻译
深度强化学习(或仅仅是“ RL”)在工业和研究应用中广受欢迎。但是,它仍然受到一些关键限制,从而减慢了广泛的采用。它的性能对初始条件和非确定性敏感。为了释放这些挑战,我们提出了一种建立RL代理合奏的程序,以有效地建立更好的本地决策,以实现长期累积的回报。首次进行了数百个实验,以比较2个电力控制环境中的不同集合构造程序。我们发现,由4个代理商组成的合奏提高了46%的累积奖励,将重现性提高了3.6,并且可以自然有效地训练和预测GPU和CPU。
translated by 谷歌翻译
相机陷阱彻底改变了许多物种的动物研究,这些物种以前由于其栖息地或行为而几乎无法观察到。它们通常是固定在触发时拍摄短序列图像的树上的相机。深度学习有可能克服工作量以根据分类单元或空图像自动化图像分类。但是,标准的深神经网络分类器失败,因为动物通常代表了高清图像的一小部分。这就是为什么我们提出一个名为“弱对象检测”的工作流程,以更快的速度rcnn+fpn适合这一挑战。该模型受到弱监督,因为它仅需要每个图像的动物分类量标签,但不需要任何手动边界框注释。首先,它会使用来自多个帧的运动自动执行弱监督的边界框注释。然后,它使用此薄弱的监督训练更快的RCNN+FPN模型。来自巴布亚新几内亚和密苏里州生物多样性监测活动的两个数据集获得了实验结果,然后在易于重复的测试台上获得了实验结果。
translated by 谷歌翻译
深度神经网络(DNN)的集合已经实现了定性预测,但它们是计算和记忆密集型的。因此,需求越来越多,以使他们通过可用的计算资源来回答大量的请求。与最近针对单个DNN的预测推理服务器和推理框架的计划不同,我们提出了一个新的软件层,以灵活性和效率DNNS的合奏服务。我们的推理系统设计了几项技术创新。首先,我们提出了一个新的程序,以在设备(CPU或GPU)和DNN实例之间找到良好的分配矩阵。它连续运行最差的功能,可以将DNN分配到存储器设备和贪婪的算法中,以优化分配设置并加快合奏。其次,我们根据多个过程设计推理系统,以异步运行:批处理,预测和结合规则,具有有效的内部通信方案,以避免开销。实验显示了极端情况下的灵活性和效率:成功地将12个重型DNN的合奏提供到4 GPU中,而在相反的相反,一个单个DNN多线程为16 GPU。它还胜过简单的基线,该基线包括在图像分类任务上通过高达2.7倍的加速度优化DNN的批处理大小。
translated by 谷歌翻译
结合(或带有结合)的自动化机器学习试图自动构建深度神经网络(DNNS)的合奏,以实现定性的预测。众所周知,DNN的合奏避免过度合身,但它们是记忆和耗时的方法。因此,理想的汽车将在一次运行时间内产生有关准确性和推理速度的不同集合。尽管以前的AutoML专注于搜索最佳模型以最大化其概括能力,但我们宁愿提出新的Automl来构建一个较大的精确和多样化的单个模型的库,以构建合奏。首先,我们的广泛基准显示异步超频带是一种有效且可靠的方法,可以构建大量不同的模型来组合它们。然后,提出了一种基于多目标贪婪算法的新合奏选择方法,以通过控制其计算成本来生成准确的合奏。最后,我们提出了一种新型算法,以根据分配优化优化GPU群集中DNNS集合的推断。使用集合方法产生的自动素体在训练阶段和推理阶段都使用有效的GPU簇在两个数据集上显示出强大的结果。
translated by 谷歌翻译
传统上,使用漫长的图像处理技术(如FreeSurfer,Cat或civet)解决了磁共振成像的皮质表面重建问题。这些框架需要很长的时间来实时应用不可行,并且对于大规模研究而言是不可行的。最近,已经引入了监督的深度学习方法,以加快这项任务,从而将重建时间从小时到几秒钟。本文将最新的皮质流模型作为蓝图,提出了三个修改,以提高其与现有的表面分析工具的准确性和互操作性,同时又不牺牲其快速推理时间和较低的GPU记忆消耗。首先,我们采用更准确的ODE求解器来减少差异映射近似误差。其次,我们设计了一个例程来产生更平滑的模板网格,避免了由皮质流的基于凸形壳模板中尖锐边缘引起的网格伪像。最后,我们重新铸造表面预测为预测的白色表面的变形,从而导致白色和伴侣表面顶点之间的一对一映射。该映射对于许多现有的表面形态计量学的表面分析工具至关重要。我们将结果方法命名CorticalFlow $^{++} $。使用大规模数据集,我们证明了所提出的更改提供了更高的几何准确性和表面规律性,同时几乎保持了重建时间和GPU记忆要求几乎没有变化。
translated by 谷歌翻译
本文介绍了端到端神经视频编解码器AIVC。它基于两个条件自动编码器MNET和CNET,用于运动补偿和编码。AIVC学会通过单端到端率延伸优化使用任何编码配置来压缩视频。此外,它在几个既定的测试条件下与最近的视频编码器HEVC提供了性能竞争。进行了全面的消融研究,以评估组成AIVC的不同模块的好处。该实现可在https://orange-opensource.github.io/aivc/上提供。
translated by 谷歌翻译